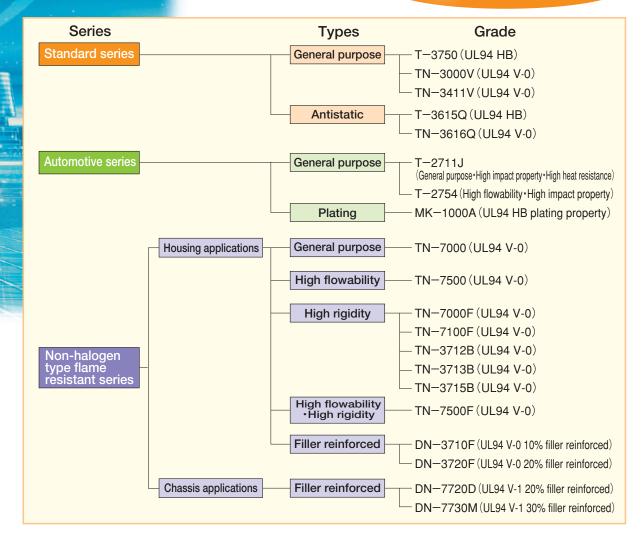


Multilon is a PC/ABS polymer alloy originally developed by Teijin Limited. Combining the many excellent characteristics of both polycarbonate (PC) and ABS, Multilon is used in a variety of products, such as electric & electronic appliance parts, office automation equipment, lighting fixtures, automobile parts, houseware and many other areas.



Multilon[®]

Contents

Multilon Outline	-1
Structure of Multilon	<u> </u>
Multilon series	
Standard series/automotive series	— 3
Non-halogen type flame-resistant series	— 5
Multilon properties	7
Multilon adoption examples	— 9
Product design	—13
Injection molding	—16
Using Multilon —	—18

Multilon[®] Lineup

Multilon standard series have been listed under UL94 HB or UL94 V-0 rating. A halogen flame retardant is used for the V-0 grade to make it flame resistant. An antimony compound is added as a flame retardant auxiliary to TN-3000V and TN-3616Q.

General Purpose Type

PC/ABS polymer alloy suitable for general purpose use. The balance between heat resistance and impact property is superior compared to the heat resistance of ABS or modified PPE. The flow property is higher than heat-resistant ABS.

Grades	Characteristics
T-3750	UL-94 HB
TN-3000V	UL-94 V-0
TN-3411V	UL-94 V-0

Antistatic Type

Antistatic type grade with an antistatic polymer. The value of surface resistance is 10^{10} - $10^{11}\Omega$, delivering excellent antistatic performance. The antistatic effect is maintained even after wiping with cloth or washing.

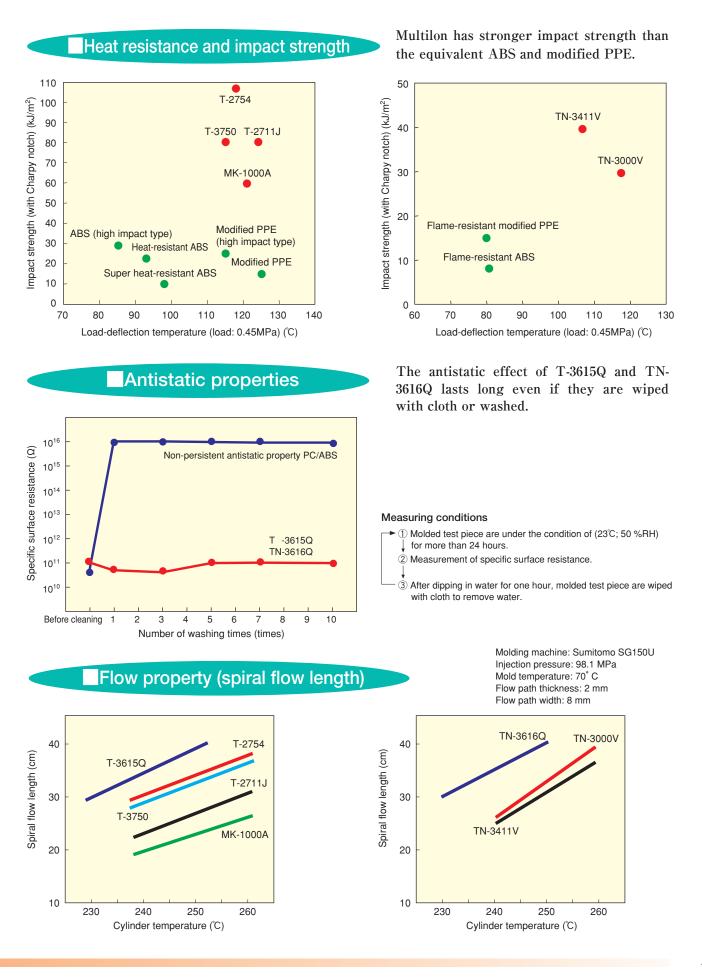
Grades	Characteristics
T-3615Q	UL-94 HB
TN-3616Q	UL-94 V-0

PC/ABS polymer alloy developed for automotive use. It shows excellent heat resistance, impact properties, light resistance and flowability.

General Purpose Type

Standard grade with excellent heat resistance, impact resistance, and light resistance.

Standard grade exhibits excellent heat resistance performance compared to the heat-resistance ABS, ensuring high impact resistance even at temperatures below -30°C.


Grades	Characteristics
T-2711J	High impact property, high heat resistance
T-2754	High flowability, high impact property

Plating type

Plating grade with excellent heat resistance, impact resistance, fatigue property, and dimensional stability. This type is widely used for outer and inner door handles, as well as panels and other plated decorations.

Plating is possible during the ABS plating process.

Grades	Characteristics
MK-1000A	UL-94 HB

These series are flame resistant grade using Non-halogen type flame retardant additive which is UL94V-0 and 5V rated. It has excellent impact properties and moldability, along with resistance to hydrolysis and excellent recycling efficiency.

Housing applications

General purpose type

Standard grade has excellent impact strength, heat resistance and moldability.

Grades	Characteristics
TN-7000	UL-94 V-0/5V

High flowability type

This type features especially reliable flowability. It is particularly suited to housing of office automation devices.

Grades	Characteristics
TN-7500	UL-94 V-0/5V

High rigidity type

High rigidity grade makes possible the molding of thin wall office automation device housings. In addition, TN-7100F has the superior impact strength.

Grades	Characteristics
TN-7000F	UL-94 V-0/5V
TN-7100F	UL-94 V-0/5V
TN-3712B	UL-94 V-0/5V
TN-3713B	UL-94 V-0/5V
TN-3715B	UL-94 V-0/5V

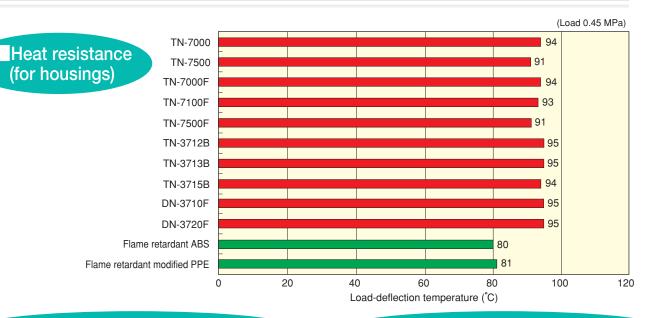
High flowability/high rigidity type

High flowability and rigidity grade makes possible the molding of thin wall office automation device housings.

Grades	Characteristics
TN-7500F	UL-94 V-0/5V

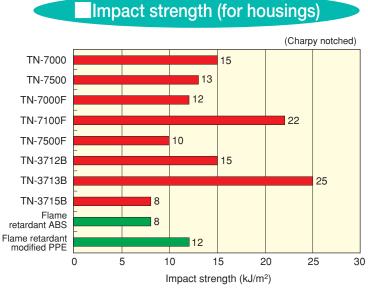
Filler reinforced type

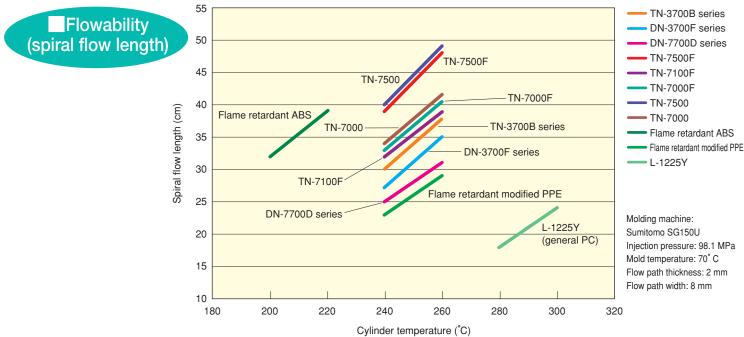
Rigidity is improved by adding inorganic fillers. High rigidity and flowability properties makes possible the molding of thin wall office automation device housings.


Grades	Characteristics
DN-3710F	UL-94 V-0/5V 10% filler reinforced
DN-3720F	UL-94 V-0/5V 20% filler reinforced

Chassis applications =

Filler reinforced type


Rigidity is improved by adding inorganic fillers. Molding anisotropy and dimensional stability have been improved for optical chassis applications, which require high dimensional accuracy.


Grades	Characteristics
DN-7720D	UL-94 V-1/5V 20% filler reinforced
DN-7730M	UL-94 V-1/5V 30% filler reinforced

Rigidity (for housings)

		Test method	Measurement condition	Standard series				Automotive series					
Property	Unit			T-3750 (general)	TN-3000V (General flame resistance)	TN-3411V (General flame resistance	T-3615Q (Persistent antistatic property	TN-3616Q / Flame-resistant persistent antistatic property	T-2711J (general)	T-2754 (high (flowability)	MK-1000A (Plating)		
Density	kg/m ³	ISO 1183	_	1,130	1,190	1,180	1,130	1,210	1,140	1,110	1,120		
Tensile modulus	MPa		1mm/min	2,250	2,550	2,650	1,760	1,760	2,250	2,150	2,050		
Tensile stress at yield	MPa	ISO 527-1		55	60	65	45	45	56	54	50		
Tensile stress at break	MPa	and ISO 527-1	50mm/min	50	50	50	50	45	48	48	42		
Tensile strain at yield	%		*5mm/min	5	2	3	3	3	3	3	3		
Tensile strain at break	%			80	75	110	120	120	110	130	110		
Flexural modulus	MPa	ISO 178	2mm/min	2,300	2,600	2,800	1,800	1,800	2,300	2,200	2,100		
Flexural strength	MPa	150 176	2mm/min	83	95	95	70	74	85	78	75		
Charpy impact	kJ/m ²	m² ISO 179	unnotched	NB	NB	NB	NB	NB	NB	NB	NB		
strength	NJ/III-		notched	80	30	40	80	55	80	107	60		
Load-deflection	Ĵ	ISO 75-1 and ISO 75-2	1.80MPa	100	103	93	93	97	104	95	97		
temperature	C		0.45MPa	115	118	107	107	112	124	118	121		
Vicat softening temperature	°C	ISO 306	50°C/h 50N	114	119	109	109	112	122	114	116		
Molding	%	In-house	parallel (4mmt)	0.5~0.7	0.5~0.7	0.5~0.7	0.5~0.7	0.5~0.7	0.5~0.7	0.5~0.7	0.5~0.7		
shrinkage	70	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	method	vertical (4mmt)	0.5~0.7	0.5~0.7	0.5~0.7	0.5~0.7	0.5~0.7	0.5~0.7	0.5~0.7	0.5~0.7	
Coefficient of linear	×10 ⁻⁴ /℃	ISO	parallel	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8		
expansion		11359-2	vertical	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8		
Surface specific resistance	Ω	IEC 60093	_	10 ¹⁶	10 ¹⁶	10 ¹⁶	10 ¹⁰ ~10 ¹¹	10 ¹⁰ ~10 ¹¹	10 ¹⁶	10 ¹⁶	10 ¹⁶		
Flammability	_	UL 94	_	HB (0.75mm)	V-2 (0.75mm) V-0 (1.5mm)	V-0 (1.5mm) 5VB (2.5mm)	HB (1.5mm)	V-0 (1.5mm)	_	_	HB (1.5mm)		

* The figures shown above are representative: They are not guarantees of individual results.
* Mold shrinkage at thickness 4mm.
* Molding shrinkage of Multilon will vary depending on its application thickness. Send any inquiry to the Headquarters of Polycarbonate Resin Sales, Teijin Limited, for detailed technical information.

	Non-halogen type flame resistant series										
	Housing applications						Chassis applications				
TN-7000	TN-7500	TN-7000F	TN-7100F	TN-7500F	TN-3712B	TN-3713B	TN-3715B	DN-3710F	DN-3720F	DN-7720D	DN-7730M
(general)	(high (flowability)	(high rigidity)	(high rigidity)	(high flowability •high rigidity	(high rigidity)	(high rigidity)	(high rigidity)	(filler (reinforced)	(filler (reinforced)	(filler (reinforced)	(filler (reinforced)
1,180	1,180	1,220	1,210	1,210	1,250	1,210	1,300	1,260	1,340	1,350	1,400
2,600	2,600	3,300	3,300	3,300	4,100	3,050	4,700	4,200	6,100	6,500	9,000
63	63	63	62	62	* 62	63	* 70	* 61	_	* 74	—
48	47	46	46	48	* 45	50	* 50	* 48	* 60	* 70	* 66
3	3	2	2	2	* 2	3	* 2	* 3	_	* 2	—
80	50	20	50	30	* 30	100	* 20	* 35	* 5	* 3	* 2
2,600	2,600	3,200	3,200	3,200	4,000	3,000	4,600	4,100	5,400	6,200	8,000
95	95	96	94	96	90	90	105	94	100	115	100
NB	NB	NB	NB	NB	NB	NB	NB	NB	60	40	18
15	13	12	22	10	15	25	8	13	4	4	3
84	80	84	83	80	85	84	85	83	83	110	108
94	91	94	93	91	95	94	95	95	95	122	120
97	94	97	96	94	98	97	98	98	98	124	122
0.5~0.7	0.5~0.7	0.4~0.6	0.4~0.6	0.4~0.6	0.4~0.6	0.45~0.65	0.35~0.55	0.4~0.6	0.2~0.4	0.2~0.4	0.1~0.3
0.5~0.7	0.5~0.7	0.4~0.6	0.4~0.6	0.4~0.6	0.4~0.6	0.45~0.65	0.35~0.55	0.5~0.7	0.3~0.5	0.3~0.5	0.2~0.4
0.8	0.8	0.6	0.6	0.6	0.55	0.65	0.50	0.45	0.30	0.40	0.30
0.8	0.8	0.7	0.7	0.7	0.55	0.65	0.50	0.70	0.65	0.48	0.35
10 ¹⁶	10 ¹⁶	10 ¹⁶	10 ¹⁶	10 ¹⁶	10 ¹⁶	10 ¹⁶	10 ¹⁶	10 ¹⁶	10 ¹⁶	10 ¹⁶	10 ¹⁶
V-2 (0.70mm) V-1 (1.2mm) V-0 (1.5mm) 5VB (2.0mm)	HB (0.45mm) V-2 (0.8mm) V-1 (1.2mm) V-0 (1.5mm) 5VB (2.0mm)	V-0 (1.2mm) 5VB (1.8mm)	V-2 (0.75mm) V-1 (1.0mm) V-0 (1.5mm) 5VB (1.8mm)	V-0 (1.2mm) 5VB (1.8mm)	V-1 (1.0mm) V-0 (1.5mm) 5VB (2.0mm)	V-1 (1.0mm) V-0 (1.5mm) 5VB (2.0mm)	V-2 (0.75mm) V-1 (1.0mm) V-0 (1.2mm) 5VB (2.0mm)	V-1 (1.0mm) V-0 (1.3mm) 5VB (1.8mm)	V-1 (1.0mm) V-0 (1.3mm) 5VB (1.8mm)	© V-1 (1.5mm) © 5VB (2.0mm)	© V-1 (1.5mm) © 5VB (2.0mm)

 $\bigcirc =$ Black

Multilon®

Mobile phone

Digital video camera

CD changer

Smoke detector

Digital audio player

Lap-top PC enclosure

Multilon®

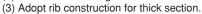
Center panel

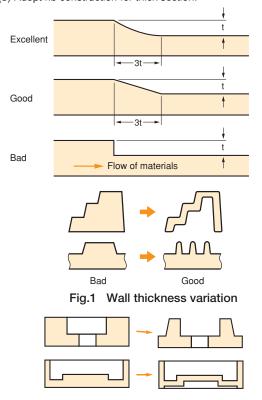
Glove box knob

Outer handle

Cluster

Multilon


Multilon is used in a wide variety of fields. The following are some examples of applications, and recommendations for designs using Multilon.


Product thickness

The thickness of molded products is usually 1-4 mm. If there is, however, any irregular wall thickness, the thick wall section sometimes sink, and bubbles are apt to show up in the center. It is therefore recommended that the rib construction should be adopted to the thick wall section. Also, drastic changes of thickness should be avoided and uniformity in thickness should be maintained.

Main considerations for thickness in designing are as follows.

- (1) Maintain thickness as uniform as possible.
- (2) Avoid drastic changes in thickness.

Corner R/T

Since stress is concentrated around the corners, avoid designing sharp corners and increase the corner R/T to above 0.3R/T, or preferably above 0.5R/T.

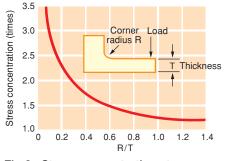
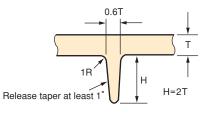
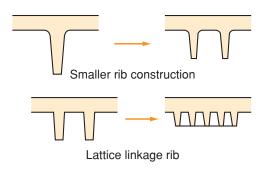



Fig.2 Stress concentration at corners


Rib

To reduce thickness of the designed product, rib construction is recommended as an efficient method of product reinforcement. The main considerations for rib construction design are as follows.

- Construction of two or more smaller ribs as opposed to a single independent thick rib.
- (2) Lattice structure to increase strength.
- (3) Reduce rib thickness to below that of the base material.
- (4) R reinforcement at the foot of the rib

Boss

Since residual stress when molded, load, and difference of thermal expansion coefficient with metal are centered onto the screw boss and insert boss, sufficient material thickness is required when designing.

For the screw boss, the inner diameter of the boss should be designed to be the pitch diameter of the screw.

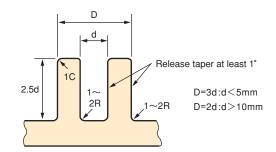


Fig.4 Standard screw boss diameter

Mold release taper

Since the mold shrinkage rate of Panlite is as low as 0.5-0.7, sufficient mold release taper is required. The standard taper on one side is about 1/100 (Fig. 5).

For embossing molds, a larger release taper may be required, depending on the roughness of the embossing.

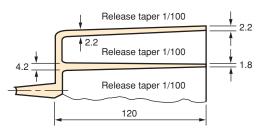
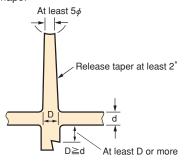
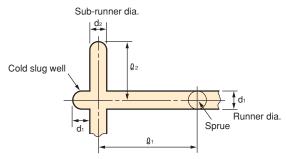



Fig.5 Standard Mold Release Taper

Sprue

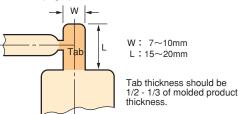

Sprue shape varies with the size of molded products and the molding machine to be used. Illustrated in Figure 6 is a standard sprue shape.

Runner

Runner shape varies with the size of molded products and the molding machine to be used. The length of the runner should be kept as short as possible. Branched runners should be balanced. A cold-slug well should be provided for the branch and the bent section of the runner.

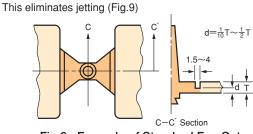
The runner and sub-runner should be designed in diameter and length as recommended below. Cold-slug well should be provided at the bent section.




Fig.7 Standard Runner Shape

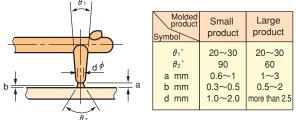
Gate

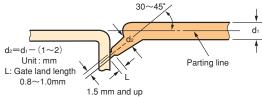
With regard to shapes and position of the gate, careful consideration should be given so that a sufficient amount of resin may be filled, molded products may be easily detached, and finishing may be done without any difficulty. The following are examples of typical gate shapes and designs used for Multilon.


Tab gate

This reduces haze around the gate section, jetting and residual stress (Fig.8).

Fig.8 Example of Standard Tab Gate


Fan gate


Fig.9 Example of Standard Fan Gate

Pin-point and submarine gates

These can detach automatically molded product from the runner.

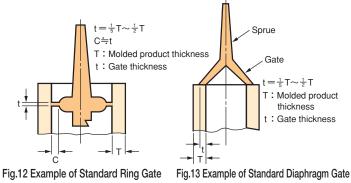

Fig.10 Example of Standard Pin-point Gate

Fig.11 Example of Standard Submarine Gate

Ring and diaphragm gates

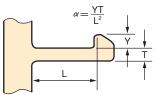
These eliminate weld around the cylinder.

Multilon

Ejection

Multilon exhibits a high heat distortion temperature and strength, aiding ejection. However, when ejection is made under force, internal distortions may occur. In this case, it is recommended that the position and the number of ejector pins should be reconsidered to facilitate uniform molding ejection.

Air vent (venting)


An air vent must be provided in order to prevent short shots and gas burns. The vent should be provided at the point at which where the gas is last pressured, such as the runner terminal or the point where the short shot or air-pocket is apt to occur.

The vent depth is 0.03mm - 0.05mm, and the width usually ranges from 5 - 10mm when provided at the parting line. Please also provide a vent near the insertion pin and ejector pin.

Design standards of snap fit parts

Bring deformation after assembly to nearly nothing (zero) so that the coefficient of strain α by the deformation (Y) on assembly may become lower than values shown here. The strain coefficient α relating to deformation on assembly can be obtained from the structural formula for a cantilever beam (Fig.14). Each corner must be rounded enough to prevent cracking caused by stress concentration.

If loads are applied repeatedly to these parts, use data of repeated fatigue (bending) instead of the coefficient of strain.

Y: deflection (cm) T: thickness (cm) L: length (cm)

Grades	$\begin{array}{c} \text{Strain} \\ \text{coefficient} \ \alpha \end{array}$
T-3750 TN-3000V TN-3411V T-2711J	0.020
T-2754 MK-1000A	0.021
T-3615Q TN-3616Q	0.019
TN-7000 TN-7500	0.018
TN-7000F TN-7100F TN-7500F TN-3713B	0.016
TN-3712B DN-3710F	0.012
TN-3715B	0.011
DN-3720F DN-7720D	0.010
DN-7730M	0.008

Fig.14 A Standard Snap-fit Joint

Insert

Multilon enables the insertion of very strong metals. However, as thermal expansion coefficient of metals differs from that of Multilon, distortions may occur due to the difference in cooling shrinkage, causing cracks around insert part.

For resins with lower cold flow like polycarbonates, distortions create large stresses that produce cracks. If the metals are heated to about 200°C, the difference in cooling shrinkage is reduced and cracks can be prevented. In designing insert boss, the outside diameter of the insert metal should be "d". (Fig.15)

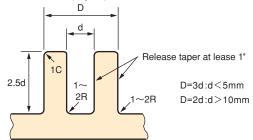


Fig.15 Standard screw boss diameter

Ultrasonic welding

Ultrasonic welding needs only a very short time of less than one second for welding and is very easy to handle. As a result, this method is becoming more and more popular. In order to obtain good bonding results, an energy director should be provided at the jointing parts of the workpiece (Fig.16). After bonding, annealing treatment should be given and residual stress be relaxed.

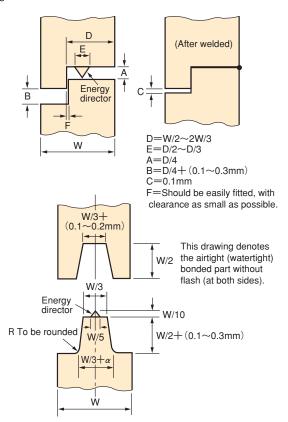


Fig.16 Joint Parts Design

1. Predrying

In order to obtain good moldings with Multilon, it is necessary to predry the polymer under the conditions listed below. These conditions will allow to avoid problems with deterioration in physical properties, foaming and silver streaking caused by hydrolysis. If the drying time exceeds 8 hours, reduce the temperatures of drying machine and hopper dryer to 10°C Lower than those shown in the following condition table, to avoid discoloration of pellet.

2. Injection Molding

It is recommended that the shot capacity of the injection molding machine be about 1.5-3 times the weight of the molded product. It is also recommended that molding be performed according to the molding conditions as described in the table below. Upon setting the molding conditions, start from a low injection speed. A hight injection speed from the start causes the resin to flow through narrow areas such as the nozzle and gates at a high speed, resulting in material burns from shear heat or gas burns at the weld area.

	Conditions	Predrying		Molding tomporature	Mold tomporature	Injection procesure	
Grades		Temp.	Time	Molding temperature	Mold temperature	Injection pressure	
T-3750 TN-3411V T-3615Q	TN-3000V TN-3616Q	110°C	4~8h	230~260°C	50∼70℃	59~147 MPa	
T-2711J T-2754	MK-1000A	110°C	4~8h	240~270°C	50~70℃	59~147 MPa	
TN-7000 TN-3712B TN-3715B DN-3710F	TN-7000F TN-7100F TN-3713B DN-3720F	80°C	5~8h	230~270°C	50∼70℃	59~147 MPa	
TN-7500	TN-7500F	80°C	5~8h	230~270°C	50~60°C	59~147 MPa	
DN-7720D		110℃	4~8h	240∼280℃	50~80°C	59~147 MPa	
DN-7730M		100°C	4~8h	240~280°C	50~80℃	59~147 MPa	

Multilon standard molding conditions

Common defects when injection molding & countermeasures

Appearance	Cause	Countermeasures		
Bubbles caused by water content	Decomposition by insufficient drying of pellets	Sufficient predrying Maintain temperature of hopper		
Weld mark	 Unsuitable cylinder temperature Insufficient injection pressure Unsuitable mold temperature No venting in the cavity 	 Raise cylinder temperature Increase injection pressure Raise mold temperature Include venting 		
Sink mark	 Caused by shrinkage from slow cooling surface of thick wall section (unsuitable wall thickness) Insufficient injection pressure Insufficient shot capacity Mold temperature is too high or insufficient cooling Insufficient pressure maintained Insufficient gate dimension 	 Reduce thickness deviation Increase injection pressure Increase shot capacity Increase cooling time if mold temperature is suitable Extend pressure holding time Increase gate dimension, especially thickness 		
Burning (whole or partial discoloration)	 Unsuitable cylinder temperature Partial retention occurs in the cylinder Seepage into the screw joint between cylinder and nozzle or other parts In case of using check valve and ring Decomposition by insufficient drying of pellets Excessive capacity of molding machine 	 Lower the cylinder temperature Eliminate dead corners Eliminate gap around screw joint Eliminate the material retention Perform predrying as recommended Change to a suitable capacity machine 		
Silver streak	 Unsuitable cylinder temperature Long retention time Unsuitable injection speed Unsuitable gate dimension Insufficient pellet drying Unsuitable injection pressure 	 Lower the cylinder temperature Eliminate retention Slow injection speed Enlarge the gate size Perform predrying as recommended Reduce injection pressure 		
Wave around gate (devitrifying)	 Unsuitable injection speed Unsuitable pressure holding time Unsuitable mold temperature Unsuitable gate dimension 	 Slow injection speed Shorten pressure holding time to avoid the presence of molten materials in the cavity after filling Raise mold temperature Enlarge the gate size 		
Jetting and flow marks	 Unsuitable mold temperature Unsuitable injection pressure Unsuitable gate dimension 	 Raise temperature Reduce injection pressure Enlarge the gate size 		
Ejection problems (defective mold release)	 Insufficient taper in core and cavity Unsuitable cycle Unsuitable cylinder temperature Unsuitable position and number of knock pins Vacuum with molded products in mold release from core Unsuitable mold temperature Injection pressure is too high and filling capacity is too large 	 Add release taper Cooling time is too short or extremely long Lower molding temperature to reasonable value Examine reasonable position and number Often occurs when the surface of the core is smooth. Eject with plate, not with pin, and add vent pin. Lower the mold temperature and lengthen the cycle Reduce injection pressure and reduce weight of raw materials 		
Brittleness of molded products	 Insufficient drying Mold temperature is too low, injection pressure and pressure holding are excessive Occurrence of inside stress caused by thickness deviation and defective mold release Notch effect Heat decomposition Contamination by foreign material 	 Maintenance of drying machine and hopper Select suitable conditions Eliminate thickness deviation Eliminate sharp corners, Modify gate position Lower cylinder temperature Eliminate the material retention Cleaning of hopper and cylinder 		

<u> Caution</u>

- The figures listed in this catalogue are typical values obtained under standard test methods, and may not be applicable for products that are used under different application conditions.
- The combustion figures listed in this catalogue are from smallscale tests and may not be applicable for hazards during a major fire.
- These grades cannot be used in food container and food packaging applications. Please call us for advice regarding applications for medical equipment and toys.
- When any kind of additives (such as anti-bacterial agents, stabilizers and flame retardants) or coloring agents are to be added to this resin, please be sure to consult with Teijin Limited, in advance. However, even after consultation, Teijin Limited will not guarantee nor bear responsibility in any form for the usage of such additives.
- The property values of other plastics have been quoted from pertinent catalogues and literature.
- Please carefully consider all potential industrial property rights when considering applications introduced in this catalog.
- The contents of this catalogue may be changed without prior notice.
- Please refer to the Material Safety Data Sheet (MSDS) before use for other warnings in detail.
- Please send inquiries to Resin & Plastic Processing Business Unit, Teijin Limited for detailed technical information.
- In certain countries or regions, raw materials used in our products may be restricted by the chemical substance control acts, laws, and regulations, and such our products may be prohibited from importation.

In the case where our products are exported or imported for the first time, the exporter or the importer must comply with regional restrictions. Please refer (consult) to Teijin Limited for the status regarding the chemical substance control acts, laws, and regulations of the respective countries or regions.

TEIJIN LIMITED

Resin & Plastic Processing Business Unit

Kasumigaseki Common Gate West Tower 2-1, Kasumigaseki 3-Chome, Chiyoda-ku, Tokyo 100-8585 Japan Tel: +81-3-3506-4776 Fax: +81-3-3506-4760

Teijin Kasei Europe B.V. Newtonweg 20 5928PN Venlo, P.O. Box 3095, 5902RB Venlo, The Netherlands

Tel: +31-77-465-8950 Fax: +31-77-382-4437

Teijin Kasei America, Inc. 5555 Triangle Parkway, Waterford Centre suite 275, Norcross, GA 30092, U.S.A. Tel: +1-770-346-8949 Fax: +1-770-346-7610

Teijin Kasei America, Inc. (Westcoast Office) 24 Executive Park,Suite #210,Irvine, CA 92614, U.S.A. Tel: +1-949-724-8565 Fax: +1-949-724-8589

Taiwan Teijin Kasei Co., Ltd. 10-B No.132, Minsheng East Road, Sec 3, Taipei City 105, Taiwan, R.O.C. Tel: +886-2-8712-2576 Fax:+886-2-8712-2577

Teijin Kasei (HK) Ltd. Rm. 2905, 29/F., Sino Plaza, 256-257, Gloucester Road, Causeway Bay, Hong Kong Tel: +852-2836-0021 Fax: +852-2803-5730

Teijin Kasei (HK) Ltd. (Guangzhou Rep. Office) Rm. 2011 Citic Plaza, 233 Tianhe N. Road, Guangzhou 510613,China Tel: +86-20-8755-5466 Fax: +86-20-3877-1802

Teijin Polycarbonate Singapore Pte Ltd. 152 Beach Road #17-03/04 Gateway East, Singapore 189721 Tel: +65-6298-8381 Fax:+65-6298-6652

Shanghai Teijin Kasei Trading Co., Ltd. Unit 1808, Park Place Office Tower, 1601 Nanjing Road (W), Shanghai, P.R.C. 200040, China Tel: +86-21-3251-8800 Fax: +86-21-3251-8566

Shenzhen Teijin Kasei Trading Co., Ltd.

Rm. 3612-3615,ShunHing Square DiWang Commercial Centar, 5002 Shennan Road East, Shenzhen,China Tel: +86-755-8883-2100 Fax: +86-755-8269-0701

Teijin Kasei Malaysia Sdn. Bhd.

Menara Dion, #35-02,27 Jalan Sultan Ismail 50250 Kuala Lumpur, Malaysia Tel: +60-3-2078-1288 Fax:+60-3-2078-2289

http://www.teijin.co.jp/